
doi: 10.1098/rsif.2008.0309
, 479-488 first published online 29 August 20086 2009 J. R. Soc. Interface

 
A.S Fokas
 
geometries
distributed current in arbitrary, spherical and ellipsoidal 

magneto-encephalography for a three-shell model:−Electro
 

References
http://rsif.royalsocietypublishing.org/content/6/34/479.full.html#ref-list-1

 This article cites 19 articles, 3 of which can be accessed free

Subject collections

 (38 articles)biomathematics   �
 (6 articles)medical physics   �

 (35 articles)mathematical physics   �
 
Articles on similar topics can be found in the following collections

Email alerting service
 hereright-hand corner of the article or click 

Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rsif.royalsocietypublishing.org/subscriptions go to: J. R. Soc. InterfaceTo subscribe to 

This journal is © 2009 The Royal Society

 rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/content/6/34/479.full.html#ref-list-1
http://rsif.royalsocietypublishing.org/cgi/collection/mathematical_physics
http://rsif.royalsocietypublishing.org/cgi/collection/medical_physics
http://rsif.royalsocietypublishing.org/cgi/collection/biomathematics
http://rsif.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royinterface;6/34/479&return_type=article&return_url=http://rsif.royalsocietypublishing.org/content/6/34/479.full.pdf
http://rsif.royalsocietypublishing.org/subscriptions
http://rsif.royalsocietypublishing.org/


 rsif.royalsocietypublishing.orgDownloaded from 
*t.fokas@

Received
Accepted
Electro–magneto-encephalography for a
three-shell model: distributed current in

arbitrary, spherical and ellipsoidal geometries

A. S. Fokas*

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, UK

The problem of determining a continuously distributed neuronal current inside the brain
under the assumption of a three-shell model is analysed. It is shown that for an arbitrary
geometry, electroencephalography (EEG) provides information about one of the three
functions specifying the three components of the current, whereas magnetoencephalography
(MEG) provides information about a combination of this function and of one of the remaining
two functions. Hence, the simultaneous use of EEG andMEG yields information about two of
the three functions needed for the reconstruction of the current. In particular, for spherical
and ellipsoidal geometries, it is possible to determine the angular parts of these two functions
as well as to obtain an explicit constraint satisfied by their radial parts. The complete
determination of the radial parts, as well as the determination of the third function, requires
some additional a priori assumption about the current. One such assumption involving
harmonicity is briefly discussed.

Keywords: electroencephalography; magnetoencephalography; brain imaging;
inverse problems
1. INTRODUCTION

The medical significance of electroencephalography
(EEG) and magnetoencephalography (MEG) is well
established (Ribary et al. 1991; Hauk et al. 2001;
Papanicolaou 2006; Langheim et al. 2006). However,
the lack of uniqueness of the solution of the associated
inverse problems remains a challenging problem. In
particular, the non-uniqueness of the inverse problem is
considered as the Achilles’ heel of MEG. In this context,
a complete answer to the non-uniqueness question for a
homogeneous spherical model was presented in Fokas
et al. (1996, 2004) where it was shown that: (i) the only
part of a continuously distributed current that can be
reconstructed via MEG consists of certain moments of
one of the two functions specifying the tangential
component of the current (the other function specifying
the tangential component, as well as the radial
component of the current, is ‘invisible’ in the spherical
model of MEG) and (ii) it is possible to reconstruct
uniquely the current that minimizes the L2-norm. Some
of these results were extended, from a spherical to a star-
shaped geometry in Dassios et al. (2005). Although
analogous results for EEG have not been obtained so far,
the mathematical notion of complementarity of MEG
and EEG for a spherical geometry was introduced in
Dassios et al. (2007a) where, by expanding the neuronal
current in terms of vector spherical harmonics, the
damtp.cam.ac.uk
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following results were obtained: (i) the component of a
continuously distributed neuronal current that gener-
ates the electric potential (and hence measured by EEG)
lives in the orthogonal complement of the component of
the current that generates the magnetic potential (which
is measured by MEG) and (ii) EEG and MEG measure-
ments can be used to specify the angular dependence of
these components as well as certain constraints about
the associated radial dependence.

In this paper, a straightforward approach for the
solution of the inverse problem for both EEG and MEG
is introduced. This approach, which is much simpler
than the one used in Fokas et al. (1996, 2004), yields a
complete answer to the non-uniqueness question even
in the case of an arbitrary geometry. Furthermore, in
the particular cases of spherical and ellipsoidal
geometries, it yields effective formulae for the ‘visible’
component of the current.

The analysis presented here is concerned with a
continuously distributed current; the opposite case
where the current is localized in a finite number of
points, i.e. the case of a collection of dipoles, is analysed
in Dassios & Fokas (preprint a,b) for spherical and
ellipsoidal geometries, respectively. For other related
important works, see El Badia & Ha-Duong (2000),
Jerbi et al. (2002), Nara & Ando (2003), Nolte &
Dassios (2005), Albanese & Monk (2006), Peng et al.
(2006), Nara et al. (2007) and Leblond et al. (preprint).

This paper is organized as follows: the equations
needed for EEG and MEG in a three-shell model are
J. R. Soc. Interface (2009) 6, 479–488
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derived in §2; this is done for the sake of completeness
so that this paper is self-contained. The inverse
problems for EEG and MEG for an arbitrary geometry
are analysed in §3. The particular cases of spherical and
ellipsoidal geometries are considered in §§4 and 5,
respectively. In §6, these results are discussed further
and a possible constraint that can lead to a unique
current is mentioned.
Figure 1. The spaceUc (cerebrum), bounded by vUc, the space
Uf (fluid) by (vUc, vUf), the space Ub (bone) by (vUf, vUb) and
the space Us (skin) by (vUb, vUs).
1.1. Notations

— J pðrÞ;BðrÞ;EðrÞ;UðrÞ and u(r) will denote the
neuronal current (primary current), the magnetic
field, the electric field, the magnetic potential and
the electric potential, respectively, at the point r2R

3.
— s and m denote conductivity and permeability.
—Uwill denote the three-dimensional space occupied by

the conducting medium and vU its boundary. The
subscripts c, f, b and s will denote brain (cerebrum),
fluid, bone and scalp, respectively. Ue will denote the
space outside the head (exterior space).

— t andQ(t) will denote the position and themoment of
a single dipole, t2Uc.

—The ‘hat’ symbolon topof a vectorwill denote that this
vectorhasunit length. Inparticular, n̂ denotes theunit
outwardnormal to the surface vU. Thederivative v/vn
will denote differentiation along the direction of n̂.

— dV(r0) and dS(r0) will denote the volume and the
surface differentials associated with U and vU.

—The spherical coordinates of the point twill bedenoted
by (t, q, 4), where

0%t!a; 0%q%p; 0%4!2p

and the spherical coordinates of the point r will be
denoted by (r, Q, F). The ellipsoidal coordinates of
the point t will be denoted by (r, m, n), where

h2%r!c1; h2%m%h3; Kh3%n%h3

and the ellipsoidal coordinates of the point r will be
denoted by (R,M, N ).
2. THE BASIC EQUATIONS

Electromagnetic activity as measured by EEG and
MEG is governed by the quasi-static reduction of
Maxwell’s equations (Ploncey & Heppner 1967) for-
mulated in a conducting space U

V!E Z 0; V!BZmðJ p CsEÞ; V$BZ 0:

ð2:1Þ
The first of these equations implies the existence of a
function u (the electric potential) such that

E ZKVu; ð2:2Þ
whereas the second and the third of equations (2.1)
imply the compatibility condition

V$J p CsV$E Z 0: ð2:3Þ
A well-known model for the electromagnetic activity

of the head consists of a space Uc modelling the space
occupied by the cerebrum, surrounded by three shells
Uf, Ub, Us, modelling the spaces occupied by the
cerebrospinal fluid, the skull and the skin. These
J. R. Soc. Interface (2009)
compartments are distinguished by their different
values of electric conductivity, which will be denoted
respectively by sc, sf, sb and ss. The spaces Uc, Uf, Ub

and Us are bounded by the surfaces vUc, (vUc, vUf),
(vUf, vUb) and (vUb, vUs), respectively (figure 1).

The primary current J p has support only in Uc.
Hence replacing in equation (2.3) E byKVuc and using
the continuity of the normal component of the electric
field across vUc, it follows that u c satisfies

scDucðrÞZV$J pðrÞ; r 2Uc

sc
vucðrÞ
vn

Z sf
vufðrÞ
vn

; r 2 vUc:

9=
; ð2:4Þ

Similarly, employing equations (2.2) and (2.3) and
using the continuity of the electric field across vUf and
vUb, it follows that u f, ub and u s satisfy

DufðrÞZ 0; r 2Uf ; ufðrÞZ ucðrÞ; r 2 vUc

sf
vufðrÞ
vn

Z sb
vubðrÞ
vn

; r 2 vUf ;

9=
;

ð2:5Þ

DubðrÞZ 0; r 2Ub; ubðrÞZ ufðrÞ;

r 2 vUf ; sb
vubðrÞ
vn

Z ss
vusðrÞ
vn

; r 2 vUb;

9=
;
ð2:6Þ

DusðrÞZ 0; r 2Us; usðrÞZ ubðrÞ;

r 2 vUb;
vusðrÞ
vn

Z 0; r 2 vUs:

9=
; ð2:7Þ

In the particular case that J p is a one dipole with
moment Q, i.e.

J pðrÞZQðtÞdðrKtÞ; r; t2Uc; ð2:8Þ
the solution of the first of equations (2.4) can be written
in the form

scucðr;tÞZ
1

4p
QðtÞ$Vt

1

jrKtjC~ucðr;tÞ
� �

; t;r2Uc:

ð2:9Þ

Indeed, by applying the operator Vr to the equation

Dr K
1

4p

1

jrKtj

� �
ZdðrKtÞ; r;t2Uc;

http://rsif.royalsocietypublishing.org/
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it follows that a particular solution of the equation

DrFðr;tÞZVrdðrKtÞ; r;t2Uc

is given by

K
1

4p
Vr

1

jrKtj ; r;t2Uc:

Hence,

scucðr;tÞZK
1

4p
Q$Vr

1

jrKtjC�uðr;tÞ;

where �u is a harmonic function.Writing �u in the form of
Q$Vt~u=4p and noting that the action of Vt on 1/jrKtj
equals minus the action of Vr on 1/jrKtj, equation (2.9)
follows.

Introducing the notation

ujðr; tÞZ
1

4p
QðtÞ$Vt~ujðr; tÞ; j Z f; b; s;

r 2Uj ; t2Uc; ð2:10Þ

equations (2.4)–(2.9) yield the following equations,
where in all these equations t2Uc:

D~ucðr; tÞZ 0; r 2Uc;

v

vn

1

jrKtjC ~ucðr; tÞ
� �

Z sf
v~ufðr; tÞ

vn
; r 2 vUc;

9>=
>;

ð2:11Þ

D~ufðr; tÞZ 0; r 2Uf ;

~ufðr; tÞZ
1

sc

1

jrKtjC ~ucðr; tÞ
� �

; r 2 vUc;

sf
v~ufðr; tÞ

vn
Z sb

v~ubðr; tÞ
vn

; r 2 vUf ;

9>>>>>=
>>>>>;

ð2:12Þ

D~ubðr; tÞZ 0; r 2Ub; ~ubðr; tÞZ ~ufðrÞ;

r 2 vUf ; sb
v~ubðr; tÞ

vn
Z ss

v~usðr; tÞ
vn

; r 2 vUb;

9=
;

ð2:13Þ

D~usðr; tÞZ 0; r 2Us; ~usðr; tÞZ ~ubðr; tÞ;

r 2 vUb;
v~usðr; tÞ

vn
Z 0; r 2 vUs:

9=
;
ð2:14Þ

Equations (2.11)–(2.14) define well-posed boundary-
value problems for the functions ~uc, ~uf , ~ub and ~us. The
solution of these problems depends only on the
geometrical characteristics of the domains {Uc, Uf,
Ub, Uc}, on the conductivities {sc, sf, sb, ss} and on t.
Having obtained these functions, which are independent
of Q(t), equations (2.9) and (2.10) yield uc, u f, ub, u s.

An integral representation for B can be derived by
solving the second of equations (2.1), where

EðrÞZKVujðrÞ; r 2Uj ; j Z c; f; b; s:

Noting that

Vr$ K
1

4p
Vr

1

jrKtj

� �
Z dðrKtÞ;

it follows that the expression in the above parentheses
provides the fundamental solution of the operator Vr .
J. R. Soc. Interface (2009)
Hence, the second of equations (2.1) yields

4p

m
BðrÞZ

ð
U

J pðr 0Þ!Vr

1

jrKr 0j dV ðr 0Þ

K
X4
jZ1

ð
Uj

sjVujðr 0Þ!Vr

1

jrKr 0j dV ðr 0Þ;

r 2Ue; ð2:15Þ

where subscripts jZ1, 2, 3, 4 refer to c, f, b, s.
In the particular case that J p is the one dipole of

equation (2.8), the first integral of the right-hand
side of equation (2.15) becomes QðtÞ!Vrð1=ðjrKtjÞÞ.
Furthermore, using Gauss theorem, it is possible to
replace the volume integrals appearing in the second
term of the right-hand side of equation (2.15) in terms
of surface integrals. Hence, equation (2.15) yields

4p

m
Bðr; tÞZQðtÞ!Vt

1

jrKtjK
1

4p
QðtÞ$VtH ðr; tÞ;

r 2Ue; t2Uc; ð2:16Þ

where the function H, which is independent of Q(t), is
defined by the following equation:

H ðr;tÞZ
ð
vUc

1

jr 0KtjC~ucðr 0;tÞ
� �

Ksf ~ufðr 0;tÞ
� �

n̂ðr 0Þ

!Vr 0
1

jrKr 0jdSðr
0Þ

C

ð
vUf

½sf ~ufðr 0;tÞKsb~ubðr 0;tÞ�n̂ðr 0Þ

!Vr 0
1

jrKr 0jdSðr
0Þ

C

ð
vUb

½sb~ubðr 0;tÞKss~usðr 0;tÞ�n̂ðr 0Þ

!Vr 0
1

jrKr 0jdSðr
0Þ

C

ð
vUs

ss~usðr 0;tÞn̂ðr 0Þ!Vr 0
1

jrKr 0jdSðr
0Þ;

r2Ue; t2Uc: ð2:17Þ

In summary, the magnetic field B(r, t) computed
outside the head and the electric potential u s(r, t)
computed on the scalp corresponding to the one dipole
(2.8) can be obtained as follows: first, obtain the
harmonic functions f~uc; ~uf ; ~ub; ~usg by solving the
boundary-value problems defined in equations
(2.11)–(2.14) and then determine the function H
using the definition (2.17); the magnetic field
{B(r, t), r2Ue, t2Uc} is given by equation (2.16)
and the electric potential fusðr;tÞ; r2vUs; t2Ucg is
given by equation (2.10) with jZs.
3. ARBITRARY GEOMETRY

After obtaining formulae for B(r, t) and u s(r, t) with
explicit Q(t) dependence, it is straightforward to
compute B(r) and u s(r) in the case of a continuously

http://rsif.royalsocietypublishing.org/
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distributed current. This simply involves replacing
Q(t) by J p(t) and then integrating over dV(t). By
employing Green’s theorem in the resulting
expressions, it follows that EEG and MEG involve
the divergence of J p and the curl of J p. This suggests
the use of the ‘Helmholtz decomposition’ form for the
current, which was actually already employed in
Dassios et al. (2005) and (in a reduced form) in Fokas
et al. (1996, 2004).

Proposition 3.1.Consider the three-shell model specified
by the domains Uc, Uf, Ub, Us modelling the spaces
occupied by the cerebrum, the cerebrospinal fluid, the
skull (bone) and the scalp, respectively. Let sc, sf, sb, ss
be the associated conductivities and let m be the
permeability. Let J p(t) be a continuously distributed
current with support in Uc.

Express J p(t) in the Helmholtz decomposition form

J pðtÞZVJðtÞCV!AðtÞ; V$AðtÞZ 0; t2Uc:

ð3:1Þ

The electric potential us(r), r2vUs is affected only by
DJ(t), whereas the magnetic field B(r), r2Ue, is
affected by DJ(t) and by DA(t). Furthermore, the
radial part of B(r), i.e. r$B(r), is affected only by
DJ(t) and D(t$A(t)).

In more detail, the following formulae are valid:

usðrÞZK
1

4p

ð
Uc

ðDJðtÞÞ~usðr; tÞdV ðtÞ; r 2 vUs;

ð3:2Þ

4p

m
BðrÞZK

ð
Uc

ðDAðtÞÞ dV ðtÞ
jrKtj

C
1

4p

ð
Uc

ðDJðtÞÞH ðr; tÞdV ðtÞ; r 2Ue;

ð3:3Þ

4p

m
r$BðrÞZK

ð
Uc

Dðt$AðtÞÞ dV ðtÞ
jrKtj

C
1

4p

ð
Uc

ðDJðtÞÞr$H ðr;tÞdV ðtÞ; r2Ue:

ð3:4Þ

In equations (3.2)–(3.4), ~us and H are defined in §2
in terms of the geometrical characteristics of {Uc, Uf,
Ub, Us}, the conductivities, and t.

Proof. Integrating equation (2.10) where jZs
with respect to dt over Uc, using Gauss theorem, and
noting that

V$J p ZV$ðVJCV!AÞZDJ;

equation (3.2) follows.
Similarly, integrating equation (2.16) with respect to

dt over Uc, using Gauss theorem to replace

J p!Vt

1

jrKtj with ðVt!JpÞ 1

jrKtj
J. R. Soc. Interface (2009)
and noting that

V!J p ZV!ðVJCV!AÞ
ZKDACVðV$AÞZKDA;

equation (3.3) follows.
For the derivation of equation (3.4), we will use

the identity

r$

ð
Uc

ðDAðtÞÞ dV ðtÞ
jrKtj Z

ð
Uc

Dðt$AðtÞÞ dV ðtÞ
jrKtj ; ð3:5Þ

which can be derived as follows. The left-hand side of
equation (3.5) can be rewritten in the form

r$

ð
Uc

ðDAðtÞÞ dV ðtÞ
jrKtj Z

ð
Uc

ðDAÞ$ ðrKtÞ
jrKtj dV ðtÞ

C

ð
Uc

ðDAÞ$t dV ðtÞ
jrKtj : ð3:6Þ

The first integral on the right-hand side of equation
(3.6) equalsð

Uc

ðDAÞjrKtj2$ ðrKtÞ
jrKtj3

dV ðtÞ

Z

ð
Uc

ðDAÞjrKtj2$Vt

1

jrKtj dV ðtÞ

ZK

ð
Uc

Vt½ðDAÞjrKtj2� dV ðtÞ
jrKtj

ZK2

ð
Uc

ðtKrÞ$DA dV ðtÞ
jrKtj :

Replacing the first term of the right-hand side of
equation (3.6) by the right-hand side of the above
equation, equation (3.6) becomes equation (3.5) (multi-
plied by K1).

The identity (3.5) implies that the first term of the
right-hand side of equation (3.4) involves t$DA, which
equals D(t$A) owing to the identity

t$DAZDðt$AÞC2V$A: &

Remark 3.1. The representation for B(r), r2Ue given
by equation (3.3), implies that V!B(r)Z0 for r2Ue.
Hence, there exists a function U(r), the magnetic
potential, such that

BðrÞZmVUðrÞ; r 2Ue: ð3:7Þ
Equation (3.4) implies that the dot product r$B
involves only DJ and Dt$A. Hence,

r$VUðrÞ depends only on DJðtÞ
and on Dðt$AðtÞÞ:

The term r$VU will give rise to a first-order partial
differential equation (PDE); the solution U of this PDE
(and hence B) will only depend on DJ(t) and
D(t$A(t)). For this reason, in the remainder of this
paper, emphasis will be placed on r$B instead of B.

In the particular cases of spherical and ellipsoidal
geometries, the functions f~uc; ~uf ; ~ub; ~usg can be
expressed explicitly in terms of spherical and ellipsoidal
harmonics, respectively (see Giapalaki & Kariotou
2006; Dassios & Fokas preprint a). Using these

http://rsif.royalsocietypublishing.org/
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representations, it is possible to obtain explicit rep-
resentations for both B and u s. This will be done in
§§4 and 5.

Remark 3.2. The current J p defined in equation (3.1),
depends on the scalar function J and on the three
scalar functions fAjg31 specifying the vector A.
However, A satisfies the equation V$AZ0, thus only
two among the three functions fAjg31 are independent.
Equation (3.2) shows that u s depends only on DJ,
whereas equation (3.4) shows that r$B depends on DJ
and D(t$A). Hence, EEG provides information
about one of the three functions needed to specify J p

(namely J), whereas MEG provides information about
this function and one more function (namely the radial
component of A).
4. SPHERICAL GEOMETRY

Let Uc be a sphere of radius c1 and Uf, Ub and Us be
concentric shells defined as follows:

Uc : 0%r!c1; Uf : c1!r! f1;

Ub : f1!r!b1; Us : b1!r!s1:

)
ð4:1Þ

By making extensive use of the classical formula

1

jrKtj Z
XN
nZ0

tn

rnC1
Pnðr̂$t̂Þ; rOt; ð4:2Þ

where Pn denotes the usual Legendre polynomials, it
is shown in Dassios & Fokas (preprint a) that ~us is
given by

~usðr; tÞZ
XN
nZ1

snt
nPnðt̂$r̂Þ; t!c1; r Z s1; ð4:3Þ

where the constant sn is explicitly given in terms of
{c1, f1, b1, s1} and {sc, sf, sb, ss} (see Dassios & Fokas
preprint a).

For the spherical model, the dot product r$H(r, t)
appearing in equation (3.4) vanishes. Indeed, for the
integral along vUj, jZc, f, b, s,

r$n̂ðr 0Þ!Vr 0
1

jrKr 0j Z r$
r 0

rj
!

ðrKr 0Þ
jrKr 0j3

Z 0;

where rcZc1; rfZ f1; rbZb1; rsZs1.

Proposition 4.1. Consider the three-shell spherical
model specified by equations (4.1) and let the neuronal
current J p(t), 0%t!c1, be expressed in the form of
equation (3.1). Then,

usðrÞZK
1

4p

ð
Uc

XN
nZ1

snðDJðtÞÞtnPnðt̂$r̂ÞdV ðtÞ;

r Z s1 ð4:4Þ
and

4p

m
r$BðrÞZK

ð
Uc

XN
nZ1

DðtAtðtÞÞ tn

rnC1
Pnðt̂$r̂ÞdV ðtÞ;

rOs1; ð4:5Þ

where At(t) denotes the radial component of A(t) and
the constant sn is explicitly given in terms of the
conductivities and of (c1, f1, b1, s1) (see Dassios & Fokas
preprint a).
J. R. Soc. Interface (2009)
The expressions in equations (4.4) and (4.5) can be
simplified into the following expressions:

usðrÞZK
XN
nZ1

Xn
mZKn

sn
2nC1

cnC1
1 ½c1 _j

m
n ðc1ÞKnjm

n ðc1Þ�

!Ym
n ðr̂Þ; r Z s1 ð4:6Þ

and

4p

m
r$BðrÞZK

XN
nZ1

Xn
mZKn

cnC2
1

2nC1
½c1 _amn ðc1Þ

KðnK1Þamn ðc1Þ�
Ym

n ðr̂Þ
rnC1

; rOs1;

ð4:7Þ
where _j

m
n ; _amn denote derivatives with respect to t,

and jm
n ðtÞ and amn ðtÞ are the t-dependent parts of

the expansions of J(t) and At(t) in spherical
harmonics, i.e.

JðtÞZ
XN
nZ1

Xn
mZKn

jm
n ðtÞYm

n ðt̂Þ ð4:8Þ

and

AtðtÞZ
XN
nZ1

Xn
mZKn

amn ðtÞYm
n ðt̂Þ; 0!t!c1: ð4:9Þ

Proof. Replacing in equations (3.2) and (3.4), ~usðr; tÞ
and 1/jrKtj by the right-hand side of equations (4.3)
and (4.2), and noting that r$HZ0, equations (3.2) and
(3.4) become equations (4.4) and (4.5).

Recall that

dV ðtÞZ t2 sin qdt dq d4: ð4:10Þ
Replacing in equation (4.4),J by the right-hand side of
equation (4.8) and using the identity

t2Djm
n ðtÞYm

n ðt̂ÞZ d

dt
t2

d

dt
jm
n ðtÞ

� ��

KnðnC1Þjm
n ðtÞ

�
Ym

n ðt̂Þ ð4:11Þ

and the orthogonality conditionð2p
0

d4

ðp
0
dqYm

n ðt̂ÞPn 0 ðt̂$r̂Þsin qZ
4p

2nC1
Ym

n ðr̂Þdnn 0 ;

ð4:12Þ
equation (4.4) yields

usðrÞZK
XN
nZ1

Xn
mZKn

sn
2nC1

ðc1
0
dt

d

dt
t2

d

dt
jm
n ðtÞ

� ���

KnðnC1Þjm
n ðtÞ

�
tn
�
Ym

n ðr̂Þ: ð4:13Þ

Integration by parts impliesðc1
0
dt

d

dt
t
2 d

dt
j
m
n ðtÞ

� �� �
t
n

Z cnC1
1 c1 _j

m
n ðc1ÞKnjm

n ðc1Þ
� �

CnðnC1Þ

!

ðc1
0
dtjm

n ðtÞtn;

hence equation (4.13) becomes equation (4.6).
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The derivation of equation (4.7) is similar to that of
equation (4.6), where jm

n is now replaced by tamn . &

Remark 4.1. Equations (4.6) and (4.7) show that the
electrical potential u s(r) evaluated on the sphere rZs1
and the radial component of the magnetic field r$B
evaluated in the exterior of the head, rOs1, depend
respectively only on the following expressions:

c1 _j
m
n ðc1ÞKnjm

n ðc1Þ
c1 _a

m
n ðc1ÞKðnK1Þamn ðc1Þ;

)
ð4:14Þ

where jm
n ðtÞ and amn ðtÞ are the t-dependent parts of the

expansions of J(t) and At(t) in terms of spherical
harmonics (see equations (4.8) and (4.9)). The function
At(t) is the radial component of the vector function
A(t). Taking into consideration that A satisfies
V$AZ0, it follows that one of the two independent
functions specifying A remains arbitrary. In addition,
the knowledge of the expressions appearing in (4.14) is
insufficient for determining jm

n ðtÞ and amn ðtÞ. Regard-
ing the latter problem, the situation is similar to that
occurring in the inverse gravimetric problem (see the
review by Michel & Fokas (2008)); for the gravimetric
problem, it is often assumed that the associated radial
function is either harmonic or bi-harmonic. Assuming
that At(t) is harmonic, i.e. amn ðtÞZlmn t

n, the second of
the expressions appearing in (4.14) yields lmn c

n
1 and

hence the coefficients lmn can be determined from the
MEG measurements. Furthermore, noting that the
equation V$AZ0 takes the form

sin q
v

vt
ðt2AtÞCt

v

vq
ðsin qAqÞCt

v

v4
ðA4ÞZ0 ð4:15Þ

and employing the expansions

v

vq
ðsin qAqÞZ sin q

XN
nZ1

Xn
mZKn

bmn ðtÞYm
n ðt̂Þ; ð4:16Þ

v

v4
ðA4ÞZ sin q

XN
nZ1

Xn
mZKn

cmn ðtÞYm
n ðt̂Þ; ð4:17Þ

for the unknown functions Aq and A4, equation (4.15)
yields

d

dt
ðt2amn ðtÞÞCtbmn ðtÞCtcmn ðtÞZ 0; 0!t!c1:

ð4:18Þ

The harmonicity assumption for amn ðtÞ implies the
following relation for the unknown functions bmn ðtÞ
and cmn ðtÞ:

tðbmn ðtÞCcmn ðtÞÞZKðnC2Þlmn tnC1: ð4:19Þ

The harmonicity assumption is inappropriate for
J(t), since in this case the first of the expressions
appearing in (4.14) vanishes. On the other hand,
assuming that J(t) is bi-harmonic, i.e. jm

n ðtÞZ
kmn t

nC2, the first of the expressions in (4.14) yields
2kmn c

nC2
1 and hence the coefficients kmn can be

determined from the EEG measurements.
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Remark 4.2. Defining the magnetic potential U(r) by
equation (3.7), using the identity

1

m
r$BðrÞZ r$VUðrÞZ r

vU

vr

and integrating equations (4.5) and (4.7) with respect
to r from r toN (whereU vanishes), equations (4.5) and
(4.7) yield the following expressions for the magnetic
potential U:

UðrÞZ 1

4p

ð
Uc

XN
nZ1

1

ðnC1Þr DðtA
tðtÞÞ t

r

	 
n

!Pnðt̂$r̂ÞdV ðtÞ; rOs1 ð4:20Þ

and

UðrÞZ 1

4p

XN
nZ1

Xn
mZKn

cnC2
1

ðnC1Þð2nC1Þ c1 _a
m
n ðc1Þ½

KðnK1Þamn ðc1Þ�
Ym

n ðr̂Þ
rnC1

; rOs1: ð4:21Þ

5. ELLIPSOIDAL GEOMETRY

The surfaces vUj, jZc, f, b, s are now confocal
ellipsoidal surfaces with the following characteristics:

vUc : 0!c3!c2!c1; vUf : 0! f3! f2! f1;

vUb : 0!b3!b2!b1; vUs : 0!s3!s2!s1:

)

ð5:1Þ

This means that the surface vUc is defined by the
equation

x 2
1

c21
C

x 2
2

c22
C

x23
c23

Z 1 ð5:2Þ

and similarly for the other surfaces.
The above surfaces have the same semi-focal

distances fhjg3jZ1, where

h2
1 Z s22Ks23 Z b22Kb23 Z f 22 Kf 23 Z c22Kc23;

h2
2 Z s21Ks23 Z b21Kb23 Z f 21 Kf 23 Z c21Kc23;

h2
3 Z s21Ks22 Z b21Kb22 Z f 21 Kf 22 Z c21Kc22:

9>>=
>>; ð5:3Þ

The Cartesian coordinates (t1, t2, t3) of a point t are
related with their ellipsoidal coordinates (r, m, n) by the
following equations:

t1 Z
rmn

h2h3

;

t2 Z
1

h1h3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Kh2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
3Kn2

q
;

t3 Z
1

h2h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2Km2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2Kn2

q
;

h2%r!N; h2%m%h3; K h3%n!h3:

9>>>>>>>>>=
>>>>>>>>>;

ð5:4Þ

The analogue of equation (4.2) is now the classical
formula

1

jrKtj Z
XN
nZ0

X2nC1

mZ1

4p

ð2nC1Þgm
n

E
m
n ðtÞFmn ðrÞ; rOR;

ð5:5Þ
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where

E
m
n ðtÞZEm

n ðrÞEm
n ðmÞEm

n ðnÞ;
F
m
n ðrÞZ ð2nC1ÞEmn ðrÞImn ðRÞ;

Imn ðRÞZ
ðN
R

dr

ðEm
n ðrÞÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

2

p

9>>>=
>>>;

ð5:6Þ

and Em
n ðrÞ and gm

n are defined as follows: Em
n ðrÞ, the

interior ellipsoidal harmonics, satisfy the Lamé equation

Lm
n E

m
n ðrÞZ 0;

Lm
n Z

d

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

2

q
d

dr

C
ðh2

2 Ch2
3ÞPm

n KnðnC1Þr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

2

p ;

9>>>>>=
>>>>>;

ð5:7Þ

Pm
n constant; the constant gm

n is defined by

gm
n Z

ðh2

h3

ðh3

Kh3

ðEm
n ðmÞÞ2ðEm

n ðnÞÞ2dSe;

dSe Z
ðm2Kn2Þdm dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2Kh2
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2Km2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
3Kn2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2Kn2

p :

ð5:8Þ

The formulae for ~ujðr; tÞ are given in Giapalaki &
Kariotou (2006). Using these important formulae,
it follows that ~uj , jZb, f, s evaluated on the surface
vUl, lZc, b, f, s are given by

~ujðr 0; tÞZ 4p
XN
nZ1

X2nC1

mZ1

1

gm
n

C lm
jn E

m
n ðtÞEm

n ðM ÞEm
n ðNÞ;

r 0 2 vUl ; t2Uc; j Z b; f; s; l Z c; b; f; s; ð5:9Þ

where the constants C lm
jn depend on the conductivities

and on the geometrical constants appearing in equation
(5.1) (see equations (A 1)–(A 5) of appendix A). For
example, for ~us evaluated on vUs, the associated
constant C sm

sn is given by equation (A 1). The function

1

sc

1

jr 0KtjC ~ucðr 0; tÞ
� �

; r 0 2 vUc; t2Uc

is also given by the right-hand side of equation (5.9)with
the relevant constant equal to C cn

cm.
In contrast to the case of spherical geometry, the dot

product of r with H does not vanish in the ellipsoidal
case. Thus, it is now necessary to evaluate the surface
integrals appearing in the definition of H (see equation
(2.17)). It is shown in appendix A that

1

4p
Hðr; tÞZ

XN
nZ1

X2nC1

mZ1

F
m
n ðrÞ

ð2nC1Þgm
n

X2nC1

lZ1;lsm

Hml
n E

l
nðtÞ;

ð5:10Þ

where the Cartesian components of the constant vector
Hml

n depend on the conductivities and on the geo-
metrical constants appearing in equation (5.1).
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Using equation (5.10) as well as the classical formula
(5.5), equation (2.16) becomes

Bðr; tÞ
m

Z
XN
nZ1

X2nC1

mZ1

F
m
n ðrÞ

ð2nC1Þgm
n

QðtÞ!VtE
m
n ðtÞ

(

KQðtÞ$Vt

X2nC1

lZ1 lsm

1

4p
Hml

n E
l
nðtÞ

)
; ð5:11Þ

where r2Ue and t2Uc.

Proposition 5.1. Consider the three-shell ellipsoidal
model specified by equations (5.1) and let the neuronal
current J p(t), t2Uc, be expressed in the form (3.1).
Then,

usðrÞZK
1

4p

ð
Uc

XN
nZ1

X2nC1

mZ1

1

gm
n

C sm
sn ðDJðtÞÞ

!E
m
n ðtÞEm

n ðMÞEm
n ðNÞdV ðtÞ; r 2 vUs

ð5:12Þ
and

r$BðrÞ
m

ZK

ð
Uc

XN
nZ1

X2nC1

mZ1

1

ð2nC1Þgm
n

Dðt$AðtÞÞEmn ðtÞ
(

KðDJðtÞÞ
X2nC1

lZ1;lsm

1

4p
r$Hml

n E
l
nðtÞ

)
F
m
n ðrÞdV ðtÞ;

r 2Ue: ð5:13Þ

In equation (5.12), the ellipsoidal coordinates of the
point r on the surface vUs are (s1,M, N ); the constants
C sm

sn as well as the Cartesian coordinates of the constant
vector Hml

n can be explicitly computed in terms of the
conductivities and of the constants (cj, fj, bj, sj), jZ1, 2, 3.

The expressions in equations (5.12) and (5.13) can be
simplified into the following expressions:

usðrÞZK
1

4p

XN
nZ1

X2nC1

mZ1

C sm
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Kh2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Kh2

2

q
_j
m
n ðc1ÞEm

n ðc1Þ
�

Kjm
n ðc1Þ _E

m
n ðc1Þ

�
Em

n ðMÞEm
n ðNÞ; r 2 vUs ð5:14Þ

and

r$BðrÞ
m

ZK
XN
nZ1

X2nC1

mZ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Kh2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Kh2

2

q
2nC1

! _amn ðc1ÞEm
n ðc1ÞKamn ðc1Þ _E

m
n ðc1Þ

� ��
K

X2nC1

lZ1;lsm

1

4p
r$Hml

n
_j
l
nðc1ÞEl

nðc1Þ
h

Kjl
nðc1Þ _E

l
nðc1Þ

io
F
m
n ðrÞ; r 2Ue; ð5:15Þ

where jm
n ðtÞ and amn ðtÞ are the radial parts of the

expansions of J(t) and of t$A(t) in ellipsoidal
harmonics, i.e.

JðtÞZ
XN
nZ1

X2nC1

mZ1

jm
n ðrÞEm

n ðmÞEm
n ðnÞ ð5:16Þ

and

t$AðtÞZ
XN
nZ1

X2nC1

mZ1

amn ðrÞEm
n ðmÞEm

n ðnÞ; t2Uc: ð5:17Þ

Proof. Replacing in equation (3.2), the function ~usðr; tÞ
by the right-hand side of equation (5.9) with jZlZs,
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equation (3.2) becomes equation (5.12). Similarly,
replacing in equation (3.4) 1/jrKtj and H/4p by the
right-hand side of equations (5.5) and (5.10), equation
(3.4) becomes equation (5.13).

The volume differential for Uc is given by

dV ðtÞZ hrhmhn dr dm dn; ð5:18Þ

where the functions hr, hm and hn are defined by

hr Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Km2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kn2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

2

p ;

hm Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Kn2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Km2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2Km2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Kh2

3

p ;

hn Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Kn2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kn2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2Kn2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
3Kn2

p :

9>>>>>>>>>=
>>>>>>>>>;

ð5:19Þ

The definitions of dSe (see equation (5.8)), hm and hn
imply that

dSe Z
hmhnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2Km2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2Kn2
p dm dn;

hence

dV ðtÞZ ðr2Km2Þðr2Kn2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

2

p dr dSe: ð5:20Þ

The analogue of equation (4.12) is the following
orthogonality conditionðh3

h2

ðh3

Kh3

Em
n ðmÞEm

n ðnÞEm 0

n 0 ðmÞEm 0

n 0 ðnÞdSe

Zgm
n dnm 0dmm 0 : ð5:21Þ

Furthermore, the analogue of equation (4.11) is the
following identity (Dassios & Fokas preprint c):

ðr2Km2Þðr2Kn2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

2

p Djm
n ðrÞEm

n ðmÞEm
n ðnÞ

Z ðLm
n j

m
n ðrÞÞEm

n ðmÞEm
n ðnÞ; ð5:22Þ

where the linear operatorLm
n is defined in equation (5.7).

Replacing in equation (5.12) J(t) and dV(t) by the
right-hand side of equations (5.16) and (5.20), and then
making use of equations (5.22) and (5.21), equation
(5.12) becomes

usðrÞZK
1

4p

XN
nZ1

X2nC1

mZ1

C sm
sn E

m
n ðM ÞEm

n ðNÞ

!

ðc1
h2

ðLm
n j

m
n ðrÞÞEm

n ðrÞdr; r 2 vUs: ð5:23Þ

Integration by parts impliesðc1
h2

Em
n ðrÞ

d

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

2

q
d

dr
jm
n ðrÞ

� �
dr

Z

ðc1
h2

jm
n ðrÞ

d

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Kh2

2

q
d

dr
Em

n ðrÞ
� �

dr

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Kh2

3

q
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Kh2

2

q
_j
m
n ðc1ÞEm

n ðc1ÞKjm
n ðc1Þ _E

m
n ðc1Þ

� �
:

Hence, equation (5.23) becomes equation (5.14).
The derivative of equation (5.15) is similar. &
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6. CONCLUSIONS

The three-shell model of electro–magneto-encephalo-
graphy has been analysed in arbitrary, spherical and
ellipsoidal geometries. By using the Helmholtz decom-
position for the current, i.e. by expressing Jp in terms of
J and A, where A satisfies the equation V$AZ0 (see
equation (3.1)), it has been shown that in general the
electric potential evaluated on the scalp involves only
DJ (see equation (3.2)), whereas the radial component
of the magnetic field evaluated outside the head
involves only DJ and D(t$A) (see equation (3.4)).

In the particular case of spherical geometry, the
relevant formulae simplify: u s and r$B depend,
respectively, on

c1 _j
m
n ðc1ÞKnjm

n ðc1Þ and c1 _a
m
n ðc1ÞKðnK1Þam

n ðc1Þ;

where jm
n and amn are the t-dependent parts of the

expansions of J(t) and At in terms of spherical
harmonics (see equations (4.8) and (4.9)).

Similarly, in the case of ellipsoidal geometry, u s and
r$B depend, respectively, on

_j
m
n ðc1ÞEm

n ðc1ÞKjm
n ðc1Þ _E

m
n ðc1Þ

and

_amn ðc1ÞEm
n ðc1ÞKamn ðc1Þ _E

m
n ðc1Þ

where jm
n ðrÞ and amn ðrÞ are the r-dependent parts of the

expansions of J(t) and t$A in terms of ellipsoidal
harmonics (see equations (5.16) and (5.17)).

The questions of determining completely the func-
tions jm

n and amn , as well as determining the tangential
part ofA, remain open. A possible approach to this non-
uniqueness question is to use the minimization of the
L2-norm of J p. In this respect, we recall that for the
inverse gravimetric problem (which has certain simi-
larities with the inverse MEG problem), the mass
density that minimizes the L2-norm is the harmonic
density (Michel & Fokas 2008). A similar result for the
MEG problemwas obtained in Fokas et al. (1996, 2004).
However, the representation ofU(t) used in Fokas et al.
(1996, 2004) is different from the one used here. This is
due to the fact that the representation for the current
J p used here (see equation (3.1)) is different from the
one used in Fokas et al. (1996, 2004). The latter rep-
resentation is quite convenient for the case that one
considers onlyMEG, but it is inappropriate for the case
that MEG and EEG are used simultaneously. Indeed,
in the representation of Fokas et al. (1996, 2004), the
radial component of J p is arbitrary and then the contri-
butions of this part to MEG and EEG do not uncouple.

The unique current corresponding to the minimal L2-
norm assumption, and the numerical implementation of
the relevant inverse algorithm using real data from the
Brain Unit of MRC, Cambridge, will be presented in
another publication.

This is part of a project initiated with I. M. Gel’fand and
Y. Kurylev in 1994 under the influence of A. A. Ioannides.
Further progress was made jointly with G. Dassios in the
framework of the Marie Curie Chair of Excellence Project
Brain supported by the EC, EXC 023928.
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APPENDIX A

Explicit representations for the functions ~ujðr; tÞ, jZc,
b, f, c for r2Uj can be deduced from the representations
(5.1)–(5.5) of Giapalaki & Kariotou (2006). Indeed,
these equations immediately imply the following
formulae for the constants C lm

jn :

C sm
sn Z

1

_E
m
n ðs1ÞGm

3;n

; ðA 1Þ

C bn
sm ZC bn

bm ZC sm
sn C

Em
n ðb1Þ
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cm ZC cn

fm C
Em

n ðb1Þ
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3;n

½Imn ðb1ÞKImn ðs1Þ�; ðA 5Þ

where the constant Gm
j;n, jZ1, 2, 3, is given in equations

(5.6) and (5.7) of Giapalaki & Kariotou (2006).
In order to derive equation (5.10), we first note that

the unit normal n̂ to the ellipsoidal surface vUc

coincides with the evaluation of the unit vector r̂

(associated with the ellipsoidal coordinates r, m, n) on
the surface vUc, which is given by (Dassios & Kariotou
2003; Dassios et al. 2007b)

n̂ðr 0ÞZ c1c2c3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Km2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Kn2

p X3
jZ1

x 0
j x̂j

cj
;

r 0 2 vUc; ðA 6Þ
where ðx 0

1; x
0
2; x

0
3Þ are the Cartesian coordinates of the

point r 0 and ðx̂1; x̂2; x̂3Þ denote the unit vectors (i, j, k)
along the Cartesian axes.

The surface differential dS(r 0) of the surface vUc

equals hmðr 0Þhnðr 0Þdm dn, r 0 2 vUc, where hm and hn are
defined in equation (5.19). By evaluating hmhn at rZc1,
it follows that

dSðr 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Km2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21Kn2

p Z dSe; ðA 7Þ

where dSe is defined in equation (5.8).
By making use of equation (5.9), it follows that the

curly bracket of the first term of the right-hand side of
equation (2.17) equalsXN

nZ1

X2nC1

mZ1

1

gm
n

Cm
n E

m
n ðtÞEm

n ðMÞEm
n ðNÞ;

Cm
n Z scC

cm
cn K sfC

cm
fn : ðA 8Þ

Furthermore, for r 0 2 vUc,
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The right-hand side of equation (A 9) can be further
simplified by using the following remarkable formula
derived in Dassios & Fokas (preprint c):

x 0
1

c1
x̂1 C

x 0
2

c2
x̂2 C

x 0
3

x3
x̂3

� �
!VEmn ðr 0Þ

Z
X2nC1

lZ1;lsm

cml
1n x̂1 Ccml

2n x̂2 Ccml
3n x̂3


 �
El

nðM ÞEl
nðNÞ;

r 0 2 vUc: ðA 10Þ

Substituting this formula in the right-hand side of
equation (A 9) and employing the orthogonality of the
ellipsoidal harmonics, it follows that the first integral
on the right-hand side of equation (2.17) equals

c1c2c34p
XN
nZ1

X2nC1

mZ1

F
m
n ðrÞ

ð2nC1Þgm
n

Cm
n

!
X2nC1

lZ1;lsm

cml
1n x̂1 Ccml

2n x̂2 Ccml
3n x̂3


 �
El

nðtÞ:

The evaluation of the other three integrals is similar.
Hence, equation (5.10) follows, where the Cartesian
components of the constant vector Hml

n are given by

Hml
jn Z c1c2c3 scC

cm
cn K sfC

cm
fn½ �cml

jn

C f1f2f3 sfC
fn
fmK sbC

fn
bm

h i
f ml
jn

Cb1b2b3 sbC
bm
bn K ssC

bm
sn

� �
bml
jn

Cs1s2s3ssC
sn
sms

ml
jn ; j Z 1; 2; 3; ðA 11Þ

where C ln
sm are defined in equations (A 1)–(A 5), cml

jn ,

jZ1, 2, 3 are defined in equation (A 10) and ðf ml
jn ; bml

jn ; s
ml
jn Þ

are defined by equations similar to equation (A 10) with
r0 on vUf, vUb, vUs, instead of r0 on vUc.
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