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Electro—-magneto-encephalography for a
three-shell model: distributed current in
arbitrary, spherical and ellipsoidal geometries

A. S. Fokas*

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0OWA, UK

The problem of determining a continuously distributed neuronal current inside the brain
under the assumption of a three-shell model is analysed. It is shown that for an arbitrary
geometry, electroencephalography (EEG) provides information about one of the three
functions specifying the three components of the current, whereas magnetoencephalography
(MEG) provides information about a combination of this function and of one of the remaining
two functions. Hence, the simultaneous use of EEG and MEG yields information about two of
the three functions needed for the reconstruction of the current. In particular, for spherical
and ellipsoidal geometries, it is possible to determine the angular parts of these two functions
as well as to obtain an explicit constraint satisfied by their radial parts. The complete
determination of the radial parts, as well as the determination of the third function, requires
some additional a priori assumption about the current. One such assumption involving
harmonicity is briefly discussed.

Keywords: electroencephalography; magnetoencephalography; brain imaging;
inverse problems
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1. INTRODUCTION

The medical significance of electroencephalography
(EEG) and magnetoencephalography (MEG) is well
established (Ribary et al. 1991; Hauk et al. 2001;
Papanicolaou 2006; Langheim et al. 2006). However,
the lack of uniqueness of the solution of the associated
inverse problems remains a challenging problem. In
particular, the non-uniqueness of the inverse problem is
considered as the Achilles’ heel of MEG. In this context,
a complete answer to the non-uniqueness question for a
homogeneous spherical model was presented in Fokas
et al. (1996, 2004) where it was shown that: (i) the only
part of a continuously distributed current that can be
reconstructed via MEG consists of certain moments of
one of the two functions specifying the tangential
component of the current (the other function specifying
the tangential component, as well as the radial
component of the current, is ‘invisible’ in the spherical
model of MEG) and (ii) it is possible to reconstruct
uniquely the current that minimizes the Ly-norm. Some
of these results were extended, from a spherical to a star-
shaped geometry in Dassios et al. (2005). Although
analogous results for EEG have not been obtained so far,
the mathematical notion of complementarity of MEG
and EEG for a spherical geometry was introduced in
Dassios et al. (2007a) where, by expanding the neuronal
current in terms of wector spherical harmonics, the
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following results were obtained: (i) the component of a
continuously distributed neuronal current that gener-
ates the electric potential (and hence measured by EEG)
lives in the orthogonal complement of the component of
the current that generates the magnetic potential (which
is measured by MEG) and (ii) EEG and MEG measure-
ments can be used to specify the angular dependence of
these components as well as certain constraints about
the associated radial dependence.

In this paper, a straightforward approach for the
solution of the inverse problem for both EEG and MEG
is introduced. This approach, which is much simpler
than the one used in Fokas et al. (1996, 2004), yields a
complete answer to the non-uniqueness question even
in the case of an arbitrary geometry. Furthermore, in
the particular cases of spherical and ellipsoidal
geometries, it yields effective formulae for the ‘visible’
component of the current.

The analysis presented here is concerned with a
continuously distributed current; the opposite case
where the current is localized in a finite number of
points, i.e. the case of a collection of dipoles, is analysed
in Dassios & Fokas (preprint a,b) for spherical and
ellipsoidal geometries, respectively. For other related
important works, see El Badia & Ha-Duong (2000),
Jerbi et al. (2002), Nara & Ando (2003), Nolte &
Dassios (2005), Albanese & Monk (2006), Peng et al.
(2006), Nara et al. (2007) and Leblond et al. (preprint).

This paper is organized as follows: the equations
needed for EEG and MEG in a three-shell model are

This journal is © 2008 The Royal Society
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derived in §2; this is done for the sake of completeness
so that this paper is self-contained. The inverse
problems for EEG and MEG for an arbitrary geometry
are analysed in §3. The particular cases of spherical and
ellipsoidal geometries are considered in §§4 and 5,
respectively. In §6, these results are discussed further
and a possible constraint that can lead to a unique
current is mentioned.

1.1. Notations

— JP(r), B(r), E(r), U(r) and u(r) will denote the
neuronal current (primary current), the magnetic
field, the electric field, the magnetic potential and
the electric potential, respectively, at the point r& R>.

— o and u denote conductivity and permeability.

— Q will denote the three-dimensional space occupied by
the conducting medium and 0Q its boundary. The
subscripts ¢, f, b and s will denote brain (cerebrum),
fluid, bone and scalp, respectively. Q. will denote the
space outside the head (exterior space).

— 7 and Q(7) will denote the position and the moment of
a single dipole, 7€ Q...

— The ‘hat’ symbol on top of a vector will denote that this
vector has unit length. In particular, n denotes the unit
outward normal to the surface Q. The derivative d/0n
will denote differentiation along the direction of 7.

—dV(r') and dS(') will denote the volume and the
surface differentials associated with Q and 0Q.

— The spherical coordinates of the point 7 will be denoted

by (7, 8, ), where
0<7<a, 0<Z6<m,

and the spherical coordinates of the point = will be
denoted by (7, ®, @). The ellipsoidal coordinates of
the point 7 will be denoted by (p, u, v), where

hQS,U«Shg, _hggl/ghs

0<op<22mw

hy <p<ey,

and the ellipsoidal coordinates of the point r will be
denoted by (R, M, N).

2. THE BASIC EQUATIONS

Electromagnetic activity as measured by EEG and
MEG is governed by the quasi-static reduction of
Maxwell’s equations (Ploncey & Heppner 1967) for-
mulated in a conducting space Q

VXE=0, VXB=ulJ"+¢E), V-B=0.

(2.1)

The first of these equations implies the existence of a
function u (the electric potential) such that

E =—Vu, (2.2)

whereas the second and the third of equations (2.1)

imply the compatibility condition

V-JP +6V-E =0. (2.3)

A well-known model for the electromagnetic activity

of the head consists of a space Q. modelling the space

occupied by the cerebrum, surrounded by three shells

Q, Q),, Q,, modelling the spaces occupied by the

cerebrospinal fluid, the skull and the skin. These

J. R. Soc. Interface (2009)

Figure 1. The space Q. (cerebrum), bounded by 0Q,, the space
Q¢ (fluid) by (0Q.., 0Q;), the space @y, (bone) by (02;, 32;,) and
the space @ (skin) by (02, 0Q;).

compartments are distinguished by their different
values of electric conductivity, which will be denoted
respectively by a., gy, 01, and o,. The spaces Q., Qy, Qy,
and Qg are bounded by the surfaces 0Q., (0Q., 09;),
(0Qy, 02y,) and (0Qy,, 0Q,), respectively (figure 1).

The primary current JP has support only in Q..
Hence replacing in equation (2.3) Eby —Vu, and using
the continuity of the normal component of the electric
field across 0Q., it follows that u. satisfies

g Au,(r) =V-J(r), reQ,
9 9 (2.4)
. u(r) — o uf(f‘)7 r e o0,
on on

Similarly, employing equations (2.2) and (2.3) and
using the continuity of the electric field across 0Q; and
00y, it follows that wug, u;, and ug satisfy

A’U,f(’l") = Oa = Qf; ’LLf(T‘) = ’U,C('I"), re a‘Qc
0 0
Oy uaff:‘) = 0y ug;r) s re th
(2.5)
Aub("ﬂ) = 07 e Qb; ub(r) = ’L[,f(”'),
0 0
r e (').Qf, ay, Ub(r) = 0y UQ(T) s re aQ}”
on on
(2.6)
A%(’I”) = Ov e ‘st ub(r) = ’LLb('l"),
2.7
r e 0Q,; 6“5(T> =0, reQ, @7)
n

In the particular case that J? is a one dipole with
moment @, i.e.

JP(r) = Q(r)é(r—1), (2.8)
the solution of the first of equations (2.4) can be written
in the form

T E Q.

1 1
O’CUC(’I",T) :EQ(T)VT |:

m"l‘ ’ZLC(‘T’,T) , T,T S5 .QC.

(2.9)
Indeed, by applying the operator V., to the equation

1 1
Al ——7—— | =0(r— €Q
1”( 47T|"'_T|) (r T)? T7T c)
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it follows that a particular solution of the equation

AF(r,7)=V,6(r—71), 7,7 € Q,

is given by

1 1

-—V,——, rtEQ..

A " |r—1| ’

Hence,
1
O'CUC(T7T):_EQ'VTW—F’D/(T’T),

where % is a harmonic function. Writing @ in the form of
Q-V.u/4w and noting that the action of V, on 1/|r—7|
equals minus the action of V,.on 1/|r— 7|, equation (2.9)
follows.

Introducing the notation

u;(r, T)

1 N .
=1 Q(7)-V,a;(r,7), j=1Db,s,

reQ;, TEQ, (2.10)

equations (2.4)—(2.9) yield the following equations,
where in all these equations 1€ Q..

Aty(r,7) =0, r€Q;
0 1 ot (r, )
— + =0 ——> € 90Q.,
on [ -] (m )} om0 " ¢
(2.11)
A’ELf(’l"7 T) = 0, re .Qf;
- _1 1 '
ag(r,7) = = + u,(r,7)|, rEIQ; (2.12)
o 0t (r, 7') . 0ty (7, 7) . reoa,
on on
Aty (r,7) =0, TE€Qy; w(r,7) = d(r),
0 0,
re a.Qf, gy Ub(r, T) = 0y US(T7 T) s re G.Qb,
on on
(2.13)
Aﬂs(ra T) = 07 rE Qs; ﬂs(rv T) = ﬂb(’l", T)a
0,
reog T o L cag.
on

(2.14)

Equations (2.11)—(2.14) define well-posed boundary-
value problems for the functions 4, ¢, %, and . The
solution of these problems depends only on the
geometrical characteristics of the domains {Q., @y,
@y, Q.}, on the conductivities {o., o, a1, 0,} and on 7.
Having obtained these functions, which are independent
of Q(7), equations (2.9) and (2.10) yield u., us, uy, U

An integral representation for B can be derived by

solving the second of equations (2.1), where
E(r) =—Vu(r), r€Q; j=cfb,s.

Noting that

1 1
Vo (——v,— ) =6(r—
" ( A7 T|r—r|> (r=m),

it follows that the expression in the above parentheses
provides the fundamental solution of the operator V,.

J. R. Soc. Interface (2009)

Hence, the second of equations (2.1) yields

—4—7TB(7') = J JP(r')y XV,

. dv(r’)

1
7 —7'|
—ZJ 7V, ( V,.;dv(r’)

"lr—17'| ’

reQ,, (2.15)

where subscripts j=1, 2, 3, 4 refer to ¢, f, b, s.

In the particular case that JV' is the one dipole of
equation (2.8), the first integral of the right-hand
side of equation (2.15) becomes Q(7) X V,.(1/(|r—7|)).
Furthermore, using Gauss theorem, it is possible to
replace the volume integrals appearing in the second
term of the right-hand side of equation (2.15) in terms
of surface integrals. Hence, equation (2.15) yields

1 1

47 . _
73(7‘,7) = Q(r)XV,——

A Q(7)-V.H(r, 1),

reQ, e, (2.16)

where the function H, which is independent of Q(7), is
defined by the following equation:

H(r,7) = LQ{ [Ir ——— L, )} - afﬂf(T/,T)}fL(rl)

1
XV, ———dS(r'
T |’I"—1"/| (7’)

+] lortn(r )= i )
Q¢

1

X Vrlm

ds(r")

+], i) — e ()

1
r=]

+J oyt (r',T)n(r )XV«| ! /ldS(r’),
00, -

XV, ds(r")

reQ,reQ. (2.17)

In summary, the magnetic field B(r, 7) computed
outside the head and the electric potential ug(r, 7)
computed on the scalp corresponding to the one dipole
(2.8) can be obtained as follows: first, obtain the
harmonic functions {@.,us, &, 4} by solving the
boundary-value problems defined in equations
(2.11)—(2.14) and then determine the function H
using the definition (2.17); the magnetic field
{B(r, 1), r€Q,, TEQ.} is given by equation (2.16)
and the electric potential {u(r,7), r €0Q,, 7 € Q.} is
given by equation (2.10) with j=s.

3. ARBITRARY GEOMETRY

After obtaining formulae for B(r, 7) and uy(r, 7) with
explicit Q(7) dependence, it is straightforward to
compute B(r) and uy(r) in the case of a continuously
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distributed current. This simply involves replacing
Q(7) by JP(r) and then integrating over dV(r). By
employing Green’s theorem in the resulting
expressions, it follows that EEG and MEG involve
the divergence of J” and the curl of JP. This suggests
the use of the ‘Helmholtz decomposition’ form for the
current, which was actually already employed in
Dassios et al. (2005) and (in a reduced form) in Fokas
et al. (1996, 2004).

Proposition 3.1. Consider the three-shell model specified
by the domains Q., Q Q), Q, modelling the spaces
occupied by the cerebrum, the cerebrospinal fluid, the
skull (bone) and the scalp, respectively. Let o, oy, oy, 0
be the associated conductivities and let u be the
permeability. Let JP(1) be a continuously distributed
current with support in Q..

Ezpress JP(7) in the Helmholtz decomposition form

JP()=VW(r)+ VX A(r), V-A(1)=0,7€Q,.

(3.1)

The electric potential us(r), r€E0Q, is affected only by
AW (1), whereas the magnetic field B(r), r€Q., is
affected by AW (1) and by AA(r). Furthermore, the
radial part of B(r), i.e. v B(r), is affected only by
AY(7) and A(T- A(7)).

In more detail, the following formulae are valid:

w(r) == 4|, APV, o,
(3.2)
4 _ . dv(r)
T B(r) =, @A) 2D
1
+ EL)C(NP(T))H(T’ 7dV(r), re€Q,
(3.3)
dm "= e Alr dv(r)
TrB(r)=— [ at-am) LD

e |, QU@ HEDve), e,
(' (3.4)

In equations (8.2)-(3.4), 4y and H are defined in §2
in terms of the geometrical characteristics of {Q., Q,
@y, O}, the conductivities, and 7.

Proof. Integrating equation (2.10) where j=s
with respect to d7 over Q., using Gauss theorem, and
noting that

V-JP =V (VW + VX A) =AW,

equation (3.2) follows.
Similarly, integrating equation (2.16) with respect to
dr over Q., using Gauss theorem to replace

1

JP XV, -

with  (V, X J?)

1
|7 — 7]

J. R. Soc. Interface (2009)

and noting that
VXJP =VX (V& +VXA)
=—AA+V(V-A) =—-AA,

equation (3.3) follows.
For the derivation of equation (3.4), we will use
the identity

|, @am)

which can be derived as follows. The left-hand side of
equation (3.5) can be rewritten in the form

dv(r)

r=

dv(r) _ JQ A(r- A(7)) . (3.5)

r—7

r.JQ’(AA(T)) |ivf?| =J '(AA)~ (|:: :|) av(r)
+ JQ'(AA) - |(j“V—(TT) (3.6)

The first integral on the right-hand side of equation
(3.6) equals

J (AA)|r—1]*- (T: 7?3 av(r)
Q, |r— 7|
= J (AA)|r—7]? -V,der)
Q, |r—7]
— [, v 2
= —QJ‘Q.(T —7r)-AA |(1V_(72| .

Replacing the first term of the right-hand side of
equation (3.6) by the right-hand side of the above
equation, equation (3.6) becomes equation (3.5) (multi-
plied by —1).

The identity (3.5) implies that the first term of the
right-hand side of equation (3.4) involves 7-A A, which
equals A(7- A) owing to the identity

7-AA = A(r-A) +2V- A. u

Remark 3.1. The representation for B(r), 7€ Q, given
by equation (3.3), implies that VX B(7)=0 for rE Q..
Hence, there exists a function U(r), the magnetic
potential, such that

B(r) = uvVU(r), 3.7)
Equation (3.4) implies that the dot product r- B
involves only A¥ and A7- A. Hence,
r-VU(r) dependsonly on A (7)
and on A(7- A(T)).

re Q..

The term VU will give rise to a first-order partial
differential equation (PDE); the solution U of this PDE
(and hence B) will only depend on A¥(7) and
A(7-A(7)). For this reason, in the remainder of this
paper, emphasis will be placed on r- B instead of B.
In the particular cases of spherical and ellipsoidal
geometries, the functions {d, @, @, 4} can be
expressed explicitly in terms of spherical and ellipsoidal
harmonics, respectively (see Giapalaki & Kariotou
2006; Dassios & Fokas preprint a). Using these
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representations, it is possible to obtain explicit rep-
resentations for both B and ug. This will be done in
§§4 and 5.

Remark 3.2. The current J? defined in equation (3.1),
depends on the scalar function ¥ and on the three
scalar functions {4;}] specifying the vector A.
However, A satisfies the equation V-A =0, thus only
two among the three functions {Aj};f are independent.
Equation (3.2) shows that ug depends only on A,
whereas equation (3.4) shows that r B depends on AY
and A(7-A). Hence, EEG provides information
about one of the three functions needed to specify JP
(namely ¥), whereas MEG provides information about
this function and one more function (namely the radial
component of A).

4. SPHERICAL GEOMETRY

Let Q. be a sphere of radius ¢; and Q, Q) and Qg be
concentric shells defined as follows:

o <r<f, } (41)

Qb <r<s.

Q.: 05 r<g, Q¢
‘Qb Ifl<’f‘<b1,

By making extensive use of the classical formula

1 i
_ P (p-3
|/,n_ 7-| Z ,,.n+1 ”(T T)7

n=0

(4.2)

where P, denotes the usual Legendre polynomials, it
is shown in Dassios & Fokas (preprint a) that  is
given by

T) = Z $, 7" Py (T 1),
n=1

where the constant s, is explicitly given in terms of
{e, fi, b1, 81} and {a, oy, a1, 05} (see Dassios & Fokas
preprint a).

For the spherical model, the dot product r- H(r, 7)
appearing in equation (3.4) vanishes. Indeed, for the
integral along 092, j=c, f, b, s,

1 7’

)
r~ﬁ(r’)><V,—=r-_><M:0’
=] o=

fla =

7<¢, r=s, (4.3)

where .= ¢, 1= by, .= 5.

Proposition 4.1. Consider the three-shell spherical
model specified by equations (4.1) and let the neuronal
current JP(1), 0<7<c¢y, be expressed in the form of
equation (3.1). Then,

=], Ss@ween e

Qe =1

us(r) =

7)dV (1),

(4.4)

7-7)dV(7),

(4.5)

where A7(t) denotes the radial component of A(t) and
the constant s, is explicitly given in terms of the
conductivities and of (¢cy, f1, b1, $1) (see Dassios € Fokas
preprint a).

J. R. Soc. Interface (2009)

The expressions in equations (4.4) and (4.5) can be
simplified into the following expressions:

w(r) =3 3 gy lade) = mia)
XYHP), r=s (4.6)

r> 8,

(4.7)

Tm . . . .
where Y, , ay denote derivatives with respect to T,

and (1) and a,(7) are the T-dependent parts of
the expansions of W(r) and A"(7r) in spherical
harmonics, i.e.

Z Z Y () Y (4.8)

n=1 m=—n

and

=§:Z MO Y(E), 0<7<c¢. (4.9)

Proof. Replacing in equations (3.2) and (3.4), 4y(r,7)
and 1/|7—7| by the right-hand side of equations (4.3)
and (4.2), and noting that r- H=0, equations (3.2) and
(3.4) become equations (4.4) and (4.5).

Recall that
dV(r) = 7% sin 6dr d6 de. (4.10)

Replacing in equation (4.4), ¥ by the right-hand side of
equation (4.8) and using the identity

Ja d d m
PV = [ (7 o)

o+ VYR Y26 (1)
and the orthogonality condition
rﬂd deﬁY’”(”)P (3-7)sin 6 = — T ym(i)g
0 @ 0 n \T) W T S _2’!’L+1 n nn'y
(4.12)

equation (4.4) yields

=2 > w2 {[)

n=1 m=—

ar[ (7 )
—n(n + 1)\//;”(7)} T"} Y (7).

Integration by parts implies

o))
=" e (@)

—ny ()] + n(n+1)

><J dry™(7)7"

hence equation (4.13) becomes equation (4.6).
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The derivation of equation (4.7) is similar to that of
equation (4.6), where ¥, is now replaced by 7a;’. W

Remark 4.1. Equations (4.6) and (4.7) show that the
electrical potential ug(r) evaluated on the sphere r=s;
and the radial component of the magnetic field r- B
evaluated in the exterior of the head, r> s, depend
respectively only on the following expressions:

e (er) — g (ey) }

cray (c))—(n—1)a, (¢),

where y'(7) and a;;'(7) are the 7-dependent parts of the
expansions of ¥ (7r) and A"(7) in terms of spherical
harmonics (see equations (4.8) and (4.9)). The function
A"(7) is the radial component of the vector function
A(7). Taking into consideration that A satisfies
V-A=0, it follows that one of the two independent
functions specifying A remains arbitrary. In addition,
the knowledge of the expressions appearing in (4.14) is
insufficient for determining y;'(7) and a,'(7). Regard-
ing the latter problem, the situation is similar to that
occurring in the inverse gravimetric problem (see the
review by Michel & Fokas (2008)); for the gravimetric
problem, it is often assumed that the associated radial
function is either harmonic or bi-harmonic. Assuming
that A7(7) is harmonic, i.e. a;'(7) = A;}7", the second of
the expressions appearing in (4.14) yields A;'c¢]' and
hence the coefficients A}’ can be determined from the
MEG measurements. Furthermore, noting that the
equation V- A =0 takes the form

(4.14)

: 0 27 0 o 0 0 9\ _
SlnﬁaT(TA)+Taa(bln0A)+Ta(p(A)—0 (4.15)

and employing the expansions

%(sin 04%) =sin 03" S WDV, (416)
n=1 m=—n
%(A‘/’) —sind3 S @OV, (417)
n=1 m=-n

for the unknown functions A’ and A?, equation (4.15)
yields

— TQaZ"(T)) + 70, (7) +7e, (1) =0,

d7_( 0<7<q.

(4.18)
The harmonicity assumption for a,'(7) implies the
following relation for the unknown functions b}'(7)
and ¢! (7):

70 (1) + ey (7)) = —(n + Q)AZLT"H. (4.19)

The harmonicity assumption is inappropriate for
Y (), since in this case the first of the expressions
appearing in (4.14) vanishes. On the other hand,
assuming that W¥(r) is bi-harmonic, i.e. ¥, (7)=
kM2 the first of the expressions in (4.14) yields
2k™c™? and hence the coefficients k7 can be
determined from the EEG measurements.

J. R. Soc. Interface (2009)

Remark 4.2. Defining the magnetic potential U(r) by
equation (3.7), using the identity
1 oU
ZrB(r)=prVU(r) = r—
p r-B(r) =r (ry=r ar

and integrating equations (4.5) and (4.7) with respect
to rfrom rto % (where Uvanishes), equations (4.5) and
(4.7) yield the following expressions for the magnetic
potential U:

(4.20)

1 & cf m
U(r) = In > :Z m[ﬁan(ﬁ)

r>s.  (4.21)

5. ELLIPSOIDAL GEOMETRY

The surfaces 0Q;, j=c, f, b, s are now confocal
ellipsoidal surfaces with the following characteristics:

an . 0<f£))<f2 <f17
00, : 0< 853 < 89 < 5.
(5.1)

This means that the surface 0Q. is defined by the
equation

(').QC:O<63<CQ<01,
aQbZO<b3<b2<b1,

N N W
st T 5=

5.2
aq &G G (5:2)

and similarly for the other surfaces.
The above surfaces have the same semi-focal
distances {hj}le, where

2 _ 2 2 _ 42 2 _ 2 2 _ 2 2
hi =s3—s3=0by—b3 =f, —f5 = c3—c3,
2 _ 2 2 _ 32 ) 2 _ 2 2
hy =si—s3=0b—b3 =f —f; =ci—c3,

2 _ 2 2 _ 32 2 _ 2 2 _ 2 2
hy=s1—s3 =bi—by=fi —f =1 —c.

(5.3)

The Cartesian coordinates (71, 7o, 73) of a point 7 are
related with their ellipsoidal coordinates (p, u, v) by the
following equations:

_ v
hahg’

T, = h11h3 Vo= Ju? =3y =2,
Vo = i

hy<p<o, hg<u<hs, —h3<v<hs.

T

(5.4)

T3 =

The analogue of equation (4.2) is now the classical
formula

1 o 2n+1 47
_ m m
|7’—T| _Z% Zl (271-{-1)’)/21 E, (T)[Fn(r)v p> R,
(5.5)
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where
E7(7) = BL () ELG) BL ),
FI) = (2 DEIE)
B = |

and E}'(p) and v are defined as follows: E}'(p), the
interior ellipsoidal harmonics, satisfy the Lamé equation

(5.6)

LTE’”( ) =0,

——\/p —h3\/p? —hﬁd

n (h3 + h3) P —n(n +1)p?

P constant; the constant v] is defined by

(5.7)

hy rhs
=] e s,
t3 JTh3
(u? —v*)du dv

NN N T

The formulae for #;(r,7) are given in Giapalaki &
Kariotou (2006). Using these important formulae,
it follows that u;, j=b, f, s evaluated on the surface
0Q,, I=c, b, f, s are given by

(5.8)

s, =

o 2n+1
(r',7) =4ry Z — Cﬁ;;L[Em (r)E™(M)E™(N),
n=1 m=
r e, e, j=D>bfs, l=cb,fs, (5.9)

where the constants C ;Zl depend on the conductivities
and on the geometrical constants appearing in equation
(5.1) (see equations (A 1)—(A 5) of appendix A). For
example, for u, evaluated on 0Q,, the associated
constant C is given by equation (A 1). The function

1 1
— {,7 + . (r',7)|, T €0Q.,TEQ,
a, ||r' — 7]

is also given by the right-hand side of equation (5.9) with
the relevant constant equal to C¢.,.

In contrast to the case of spherical geometry, the dot
product of r with H does not vanish in the ellipsoidal
case. Thus, it is now necessary to evaluate the surface
integrals appearing in the definition of H (see equation
(2.17)). It is shown in appendix A that

1 © 2n+1 2n+1 -
1 H(r.7) =ZZ 2n+1 ym l; H}'E,(
n= n #+m

(5.10)

where the Cartesian components of the constant vector
H™ depend on the conductivities and on the geo-
metrical constants appearing in equation (5.1).

J. R. Soc. Interface (2009)

Using equation (5.10) as well as the classical formula
(5.5) equation (2.16) becomes

o 2n+1

Zlmzl o +1 {Q(v)va[E;’%m
2n+1 1

—Q(1)V, Y —Hﬁ’[EL(r)}, (5.11)
1=1 l+m

where r€Q, and T€ Q...

Proposition 5.1. Consider the three-shell ellipsoidal
model specified by equations (5.1) and let the neuronal
current JP(7), T€Q,, be expressed in the form (3.1).
Then,

wir) =— =], fj%f—c:? AW (r))

Qo =1 m= Tn

EN BTN EN NIV, <00,
(5.12)
and
- B o 2n+1 "
=S G {A(r-A(r))[Enm
—arm) 3 1r-H:;”[E;m}[F;?(r)dvm,
I1=1,l#m
reQ,. (5.13)

In equation (5.12), the ellipsoidal coordinates of the
point r on the surface Qg are (s1, M, N); the constants
Ci as well as the Cartesian coordinates of the constant
vector H™ can be explicitly computed in terms of the
conductivities and of the constants (¢, f;, by, s;), j=1,2, 3.

The expressions in equations (5.12) and (5.13) can be
simplified into the following expressions:

o 2n+1

sm 2 7’1
- 47]’ ; mz C%n \/ h ‘//n Cl
_‘//n(cl) n(cl)}Ezl(M)EZL(NL r ea‘Q\ (514)
and
r-B(r) __i%ﬂ i —h3\/ i =13
u = = 2n +1
XA [an'(e)Ey(cr) —an(c)Ey (a1)]
2n+1 1 . .
=Y o H e E(e)
1=1,l#m

. ] m
V(e Bu(e)| JEi ). reo.  (5.15)
where Y (7) and a)(7) are the radial parts of the
expansions of W(r) and of 7-A(7) in ellipsoidal
harmonics, i.e.

o 2n+1
= Z il BT () (5.16)
n=1 m=
and
® 2n+1
= Z JER(v), TE€ Q.. (5.17)
n=1 m=

Proof. Replacing in equation (3.2), the function a4 (r, 7)
by the right-hand side of equation (5.9) with j=I=s,
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equation (3.2) becomes equation (5.12). Similarly,
replacing in equation (3.4) 1/|r—7| and H/4w by the
right-hand side of equations (5.5) and (5.10), equation
(3.4) becomes equation (5.13).

The volume differential for Q. is given by
dV(r) = h,h,h, dp du dv, (5.18)

where the functions h,, h, and h, are defined by

Y e A s
p_\/p2_h2 \/p2_h2’
V=
# \/—m’
\/,u, —? \/p —?

The definitions of dS, (see equation (5.

(5.19)

h, =

8)), h, and h,

imply that
hyh,
s, = el du dv,
hence
22 (p2 — 2
av(r) = LK )(” ) dp ds.. (5.20)

The analogue of equation (4.12) is the following
orthogonality condition

hy (hs , ,
||, erweroEr wer s,
2 —n3

= ’Y;Ir,L(S?mL’énmL" (521)

Furthermore, the analogue of equation (4.11) is the
following identity (Dassios & Fokas preprint c):

(0* =) (p* =)

VPP —hi/p* —h3
= (LY ) B (0 B ),

where the linear operator L} is defined in equation (5.7).
Replacing in equation (5.12) ¥ (7) and d V(7) by the
right-hand side of equations (5.16) and (5.20), and then
making use of equations (5.22) and (5.21), equation

(5.12) becomes
o 2n+1

Z Z C:ZLEI"L

n=1 m=

x J (L2 o) B ()dp, 7 <00,

Ay (p) B (W) E (v)

(5.22)

u,(r) = )EL(N)

(5.23)

Integration by parts implies

4o d d

th EV(p) 5 [\/02 —h3y\/p? —hé—\//n (p)} dp

=J ¥ (p) {\/p —h3\/ p* —hid Ex(p ]
+ cl—hg

X/ =h3[n () B (er) =i (e) B (e1)].

Hence, equation (5.23) becomes equation (5.14).
The derivative of equation (5.15) is similar. |

J. R. Soc. Interface (2009)

6. CONCLUSIONS

The three-shell model of electro-magneto-encephalo-
graphy has been analysed in arbitrary, spherical and
ellipsoidal geometries. By using the Helmholtz decom-
position for the current, i.e. by expressing J* in terms of
¥ and A, where A satisfies the equation V- A=0 (see
equation (3.1)), it has been shown that in general the
electric potential evaluated on the scalp involves only
AW (see equation (3.2)), whereas the radial component
of the magnetic field evaluated outside the head
involves only AW and A(7-A) (see equation (3.4)).

In the particular case of spherical geometry, the
relevant formulae simplify: w, and r-B depend,
respectively, on
cray (¢) =(n —1)ay (cr),

a¥, (e) —nyp(c) and

where ¢, and a; are the 7-dependent parts of the
expansions of lI’( ) and A7 in terms of spherical
harmonics (see equations (4.8) and (4.9)).

Similarly, in the case of ellipsoidal geometry, us and
r- B depend, respectively, on

‘j/ZL(Cl)Ey( ) l//n(cl) m(cl)

and

iy (e By (e) —a(e) By (¢r)

where ¥]'(p) and a)'(p) are the p-dependent parts of the
expansions of ¥(r) and 7-A in terms of ellipsoidal
harmonics (see equations (5.16) and (5.17)).

The questions of determining completely the func-
tions ¥, and a,', as well as determining the tangential
part of A, remain open. A possible approach to this non-
uniqueness question is to use the minimization of the
Ly-norm of JP. In this respect, we recall that for the
inverse gravimetric problem (which has certain simi-
larities with the inverse MEG problem), the mass
density that minimizes the Lo-norm is the harmonic
density (Michel & Fokas 2008). A similar result for the
MEG problem was obtained in Fokas et al. (1996, 2004).
However, the representation of U(7) used in Fokas et al.
(1996, 2004) is different from the one used here. This is
due to the fact that the representation for the current
J? used here (see equation (3.1)) is different from the
one used in Fokas et al. (1996, 2004). The latter rep-
resentation is quite convenient for the case that one
considers only MEG, but it is inappropriate for the case
that MEG and EEG are used simultaneously. Indeed,
in the representation of Fokas et al. (1996, 2004), the
radial component of J® is arbitrary and then the contri-
butions of this part to MEG and EEG do not uncouple.

The unique current corresponding to the minimal Lo-
norm assumption, and the numerical implementation of
the relevant inverse algorithm using real data from the
Brain Unit of MRC, Cambridge, will be presented in
another publication.

This is part of a project initiated with I. M. Gel’fand and
Y. Kurylev in 1994 under the influence of A. A. Ioannides.
Further progress was made jointly with G. Dassios in the
framework of the Marie Curie Chair of Excellence Project
Brain supported by the EC, EXC 023928.
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APPENDIX A

Explicit representations for the functions ,(r, ), j=c,
b, f, c for r€ Q,can be deduced from the representatlons
(5 1)-(5.5) of Glapalakl & Kariotou (2006). Indeed,
these equations immediately imply the following
formulae for the constants C JZ?

1

Cznm = m ) (A 1)
En (51) g}n
n sm E:Ln b
CBm = Cbm Csn + 57 1) [ (bl) (81)] (A 2)
3,n
n E? m m Gmn
Cbm = Cfm C:m + (fl) [In(fl) _In (bl)] G];L s
Oh 3,n
(A3)
n Ei(a) Gon
o Cfn n m i A4
f ) ~H W) gt (A
cn cn Em(b ) m m
Ccm = Cfm + m [I (bl) ITL (81)]7 (A 5)
3,n

where the constant G}, j=1, 2, 3, is given in equations
(5.6) and (5.7) of Giapalaki & Kariotou (2006).

In order to derive equation (5.10), we first note that
the unit normal n to the ellipsoidal surface 0Q.
coincides with the evaluation of the unit vector p
(associated with the ellipsoidal coordinates p, u, ) on
the surface 0Q., which is given by (Dassios & Kariotou
2003; Dassios et al. 2007b)

3 1A
C C2 C3 Ly ]
2 /—2 Z
a— =1

r e GQC,

(A6)

where (1, 5, 23) are the Cartesian coordinates of the
point 7’ and (&, &,, £3) denote the unit vectors (4, 3, k)
along the Cartesian axes.

The surface differential dS(v') of the surface 0Q.
equals A, (r')h,(r")du dv, ' € 0Q., where h, and h, are
defined in equation (5.19). By evaluating h,h, at p=cy,
it follows that

ds(r")

2_ 2. /2 _,2
] — M e~V

where d.S, is defined in equation (5.8).

By making use of equation (5.9), it follows that the
curly bracket of the first term of the right-hand side of
equation (2.17) equals

®© 2n+1
22 7 OB (T
n=1 m=

m __ cm
Cn =0 C(:n - Uf'Cf7L .

Furthermore, for r’ € 0Q.,

= ds,, (A7)

(1) EL (M)ET(N),

(A8)

j=1 G |’I’—’I‘/|
o 2n+1 ,
4w m Ty . Ty . x4
n; —(2n+1)yp " () (Cl o ¢ 2, cs s
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The right-hand side of equation (A 9) can be further
simplified by using the following remarkable formula
derived in Dassios & Fokas (preprint c):

/ / /

€ C2 z3
2n+1
= Z (cfndy + chydy + i) B (M) B (N),
I=1,l#m
r €0Q.. (A 10)

Substituting this formula in the right-hand side of
equation (A 9) and employing the orthogonality of the
ellipsoidal harmonics, it follows that the first integral
on the right-hand side of equation (2.17) equals

© 2n+1
m
C1 C2C347T E E C
o 1 2n + 1
2n+1
mi 2, mi 2, mi 2, l
X g (clnml + oy + anmg)En(T).
I1=1,l#m

The evaluation of the other three integrals is similar.
Hence, equation (5.10) follows, where the Cartesian
components of the constant vector H™' are given by

ml __ C
I{jn - C16263[0'00017 UfC } ]71

+ hhts|ocCli— 0, O £

+ by byby[ar, Cr — 0, OO b

+ 8152830 Csm ]n y J= 172737 (A 11)

where C! are defined in equations (A 1)-(A5), ¢!

Cin >

j=1,2, 3 are defined in equation (A 10) and (£, b7, s™)

in s Ojn s Sin
are defined by equations similar to equation (A 10) with
' on 0Qy, 89y, 0Q;, instead of 7 on Q...
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